135 research outputs found

    The Low-Energy Undulator Test Line: A SASE FEL Operating from 660 to 130 nm

    Get PDF

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Deep Saturated Free Electron Laser Oscillators and Frozen Spikes

    Full text link
    We analyze the behavior of Free Electron Laser (FEL) oscillators operating in the deep saturated regime and point out the formation of sub-peaks of the optical pulse. They are very stable configurations, having a width corresponding to a coherence length. We speculate on the physical mechanisms underlying their growth and attempt an identification with FEL mode locked structures associated with Super Modes. Their impact on the intra-cavity nonlinear harmonic generation is also discussed along with the possibility of exploiting them as cavity out-coupler.Comment: 28 page

    Pathway to a Compact SASE FEL Device

    Full text link
    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices

    Cluster size dependence of high-order harmonic generation

    Get PDF
    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303 K and 363 K). For the firrst time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 10 for very small average cluster size (~200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighbouring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (~200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure

    Single-shot fluctuations in waveguided high-harmonic generation

    Get PDF
    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide

    High-Brightness Beams from a Light Source Injector: The Advanced Photon Source Low-Energy Undulator Test Line Linac

    Get PDF
    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, including details on technical systems improvements and electron beam measurement techniques, will be discussed. The linac is capable of accelerating beams to over 650 MeV. The nominal FEL beam parameters used are as follows: 217 MeV energy; 0.1-0.2% rms energy spread; 4-8 um normalized rms emittance; 80-120 A peak current from a 0.2-0.7 nC charge at a 2-7 ps FWHM bunch

    Implementation of Radio-Frequency Deflecting Devices for Comprehensive High-Energy Electron Beam Diagnosis

    Get PDF
    In next-generation light sources, high-brightness electron beams are used in a free-electron laser configuration to produce light for use by scientists and engineers in numerous fields of research. High-brightness beams are described for such light sources as having low transverse and longitudinal emittances, high peak currents, and low slice emittance and energy spread. The optimal generation and preservation of such high-brightness electron beams during the acceleration process and propagation to and through the photon-producing element is imperative to the quality and performance of the light source. To understand the electron beam's phase space in the accelerating section of a next-generation light source machine, we employed radio-frequency cavities operating in a deflecting mode in conjunction with a magnetic spectrometer and imaging system for both low (250 MeV) and high (1.2 GeV) electron energies. This high-resolution, high-energy system is an essential diagnostic for the optimization and control of the electron beam in the FERMI light source generating fully transversely and longitudinally coherent light in the VUV to soft x-ray wavelength regimes. This device is located at the end of the linear accelerator in order to provide the longitudinal phase space nearest to the entrance of the photon-producing beam-lines. Here, we describe the design, fabrication, characterization, commissioning, and operational implementation of this transverse deflecting cavity structure diagnostic system for the high-energy (1.2 GeV) regime

    Lower Temperature Annealing of Vapor Diffused Nb\u3csub\u3e3\u3c/sub\u3eSn for Accelerator Cavities

    Get PDF
    Nb3Sn is a next-generation superconducting material for the accelerator cavities with higher critical temperature and superheating field, both twice compared to Nb. It promises superior performance and higher operating temperature than Nb, resulting in significant cost reduction. So far, the Sn vapor diffusion method is the most preferred and successful technique to coat niobium cavities with Nb3Sn. Although several post-coating techniques (chemical, electrochemical, mechanical) have been explored to improve the surface quality of the coated surface, an effective process has yet to be found. Since there are only a few studies on the post-coating heat treatment at lower temperatures, we annealed Nb3Sn-coated samples at 800 C - 1000 C to study the effect of heat treatments on surface properties, primarily aimed at removing surface Sn residues. This paper discusses the systematic surface analysis of coated samples after annealing at temperatures between 850 C and 950 C
    • …
    corecore